-\ .

Madow. g/ The conditions are usually satisfied with regard to estimates
from sample surveys. As a rule of thumb the variance formula is usually

accepted as satisfactory if the coefficient of variation of the variable

o
in the denominator is less than 0.l; that is, if :E < 0.1. In other words,
w

this condition states that the coefficient of variation of the estimate in
the denominator should be less than 10 percent. A larger coefficient of

L variation might be tolerable before becoming concerned about Equation (3.26)

! as an approximation.
B a

. The condition :E < 0.1 is more stringent than necessary for regarding
W

the bias of a ratio as negligible. ﬁith few exceptions in practice the
bias of a ratio is ignored. Some of the logic for this will appear in
the illustration below. To summarize, the conditions when Equations {(3.25)
and (3.26) are not good approximations are such that the ratio is likely to
be of questionable value owing to large variance.

If u and w are linear combinations of random variables, the theory
presented in previous sections applies to u and to w. Assuming u and w

u
are estimates from a sample, to estimate Var(;) take into account the

2 2

?%MﬁJ N\ sample design and substitute in Equation (3.26) estimates of ﬁ, G, cu, Uw

»
and P Ignore Equation (3.25) unless there is reason to believe the bias
of the ratio might be important relative to its standard error.

It is of interest to note the similarity between Var(u-w) and Varq%).

According to Theorem 3.5,

Var(u-w) = 02 + 02 - 20 ca ‘
u w uw uw

2/ Hansen, Hurwitz, and Madow, Sample Survey Methods and Theory,
Volume I, Chapter 4, John Wiley and Sons, 1953.
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By definition the relative variance of an estimate is the variance of the
estimate divided by the saquare of its expected value. Thus, in terms of

the relative variance of a fatio, Equation (3.26) can be written

u oi 05 %%
Rel Var(;) == + = - Zpuw S
u W uw

The similarity is an aid to remembering the formula for Var(%).

illustration 3.13. Suppose one has a simple random sample of n

elements from a population of N. Let x and ; be the sample means for

characteristics X and Y. Then, u = ;, w =

>
2 2
0'2 - E:B. .S_g. and 02_= ..N_:ll .S_!
u N n w N n
%
Notice that the condition discussed above, — < 0.1, is satisfied if the
w

sample is large enough so

Substituting in Equation (3.26) we obtain the following as the variance of

the ratio:

.2 2
% N-n 1. % Sx Sy 2SSy
Var(Q) = ({IQ) S5+ 5 - ——1
y ¥ ¥ XY
The bias of %» as an estimate of % is given by the second term of
y Y

Equation (3.25). For this illustration it becomes

2
N-m, 1. X >y Pxyx°%
Q) Sz -——]
¥y ¥ X

As the size of the sample increases, the bias decreases as %-whereas the

1
standard error of the ratio decreases at a slower rate, namely —— .

n
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Thus, we need not be concerned about a possibility of the bias becoming
important relative to sampling error as the size of the sample increases.
A possible exception occﬁrs when several ratios are combined. An example
is stratified random sampling when many strata are involved and separate
ratio estimates are made for the strata. This 1s discussed in the books
on sampling.

3.9 CONDITIONAL EXPECTATION

o
ff“ The theory for conditional expectation and conditional variance of a
Ch
s
N randon variable is a very important part of sampling theory, especially
Efﬁ in the theory for multistage sampling. The theory will be discussed with
reference to two-stage sampling.
Ly
The notation that will be used in this and the next section is as
follows: !
M is the number of psu's (primary sampling units) in the population.
m is the number of psu's in the sample.
Ni is the total number of elements in the ith pSu.
M
N = ENi is the total number of elements in the population.
i
o th
{ﬁ&; n, is the sample number of elements from the i psu.
e m
n = Zni is the total number of elements in the sample,
i
- _n
n = —
m

xij is the value of X for the jth element in the ith psu. It
refers to an element in the population, that is, j = 1,..., Ni’

and i = 1,..., M.
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xij is the value of X for the jth element in the sample from the

ith psu in the sample, that is, the indexes i and j refer to

the. set of psu's and elements in the sample.

N
Xi- = Zixij is the population total for the ith psu.
j’ .
z Xi- t
Xi kv is the average of X for all elements in the i~ psu.
) |
MNi M
LL°X £X
- 13 13 41 ‘ Lo
X = N =3 is the average of all N elements.
N B & T g.;l WL
M
.o |
X, = BT is the average of‘the psu totals. Be sure to note the
difference between X , and X, .
. ni‘ ET: ! LY B PR ‘ th
X, = z xij is the sample total for the 1~ psu in the sample.
A
- %5 :
X C o is the average for the ny elements in the sample from
) i
the ith pPsSu.
™m
ZZix

—

i)
X = 11;f~— is the average for all elements in the sample.

Assume simple random sampling, equal probability of selection without

replacement, at both stages. Consider the sample of n, elements from the
ith psu. We know from Section 3.3 that §1_ is an unbiased estimate of the

psSu mean ii- ; that 1is, E(§i_) = ii- and for a fixed i (a specified psu)

ENixi- = NiE(xi-) = Nixi. = Xi. . But, owing to the first stage of sampling,
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ENi;ci must be treated as a random variable. Hence, it is necessary to

become involved with the expected value of an expected value.
First, consider X as a random variable, in the context of single-

stage sampling, which could equal any one of .the values Xii in the
M -
population set of N = IN Let P(ij) be the probability of selecting

i
th th cq
the j element in the 1~ psu; that is, P(ij) is the probability of X

i

being equal to X By definition

11"
MNg
E(X) = LITP(1DX,
ij i

| IARTE TN N O AR I B LR I
Now consider the selection of an element as a two—step procedure:

Mé}‘jmu et

(1) selected a psu with probability P(i), ané (2) sélecteé‘an eiémenc

i
within the selected psu with proBability‘P(jli); In words, P(j|1) is the
probability of selecting the jth element in the 1t§ psu given that the
ith psu has already been selected. Thus,‘P(ij) =;$(i)f(j|i). By sub-

stitution, Equation (3.27) becomes

MNi
E(X) = I P(L)P(|1)X
. ij
ij
M Ni
or E(X) = IP(i) I P(j|i)X,,
ij
i h|
Ni
By definition, £ P(jli)xij is the expected value of X for a fixed value
h|

of i. It is called"conditional expectation.”

N,
Let EZ(XIi) = ZlP(jli)X where EZ(XIi) is the form of notation we

ij

Cde

will be using to designate conditional expectation. To repeat, EZ(XIi)

means the expected value of X for a fixed i. The subscript 2 indicates

(3.27)

(3.28)~
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that the conditional expectation applies to the second stage of sampling.
El and EZ will refer to expectation at the first and second stages,
respectively. .
Substituting Ez(Xli) in Equation (3.28) we obtain
M

E(X) = IP(1) E2(X|1) (3.29)
i

There is one value of Ez(xli) for each of the M psu's. In fact Ez(XIi)

is a random variable where the probability of Ez(xli) is P(1). Thus the
right-hand side of Equation (3.29) is, by definition, the expected value
of Ez(xli). This leads to the following theorem:

Theorem 3.6. E(X) = E,E,(X|1)

Suppose P(j|i) b %— and P(i) = %-. Then,
i |

N
E,(X[1) = tdox,. =%

| N i-
_ Moo IX,
and E(X) = El(xi_) = i(ﬁ)(xi.) =0

In this case E(X) is an unweighted average of the psu averages. It is
important to note that,if P(i) and P(jli) are chosen in such a way that
P(ij) is constant, every element has the same chance of selection. This
point will be discussed later.

Theorem 3.3 dealt witi the expected value of a linear combination of
random variables. There is a corresponding theorem.for conditional expecta-
tion. Assume the linear combination is
k
U= alu1+"7+akuk = tE

a.u
_1tt
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where al,...,ak are constants and ul,...,uk are random variables. Let
E(Ulci) be the expected v§lue of U under a specified condition,ci, where
cy is one of the conditions out of a set of M conditions that could occur.
The theorem on conditional expectation can then be stated symbolically as

follows:

Theorem 3.7. E(U[c,) = alE(ul|ci) oot akE(uklci)

k
or E(Ulci) = iatE(utlci)

Compare Theorems 3.7 and 3.3 and note that Theorem 3.7 is like
Theorem 3.3 except that conditional expectation is applied. Assume c is
a random event and that the‘probability of the event ey occurring is P(i).

Then E(Ulci) is a random variable and by definition the expected value of

M

E(Ulci) is ZP(i)E(UIci) which is E(U). Thus, we have the following
i
theorem:

Theorem 3.8. The expected value of U is the expected value of the

conditional expected value of U, which in svmbols is written as follows:

~ EU) = EE(U]ci) (3.30)
‘féf' Substituting the value of E(Ulci) from Theorem 3.7 in Equation (3.30)

we have

k
E(U) = E[alE(ullci)+...+akE(uk|ci)] = E[iatE(utlci)] (3.31)

Illustration 3.14. Assume two-stage sampling with simple random

sampling at both stages. Let x”, defined as follows, be the estimator of

the population total:

n
§ xij (3.32)
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Exercise 3.17. Examine the estimator, x”, Equation (3.32). Express

»

it in other forms that might help show its logical structure. For example,

E

ixij ? Does it seem like a reasonable way of

élH?

fof a‘fixéd'i what 1is

e M 33

RO §
estimating the population total?

To display x” as a linear combination of random variables it is

convenient tohexpress it in the following form: , o
N N N N
1 M1 [ "m M 'm R
[ 5 x11+,..+ - Xn ] ...+ [ o Xm +...+ o X ] (3.33)
1. 1 1 m m

ﬁm@%ese we want sto: find the expected value of x” to determine whether it

is equal to the population total. According to Theorem 3.8,

E(x") = E,E, (x* | 1) N (3.34)

Ny

T EGD = EEE
i

M B
e M B

i
xijlli} (3.35)

Eﬁuaq}qns (3 34) and (3.35) are obtained simply by substituting x” as

L]

’ the random variable in (3. 30) The c, now refers to any one of the m

i
i pau-ﬁ in the sample. First we must solve the conditional expectation,
",‘il‘ N
- E (x'[i) Since~g and ;1 are constant with respect to the conditional
‘3 - h._ . i

*

.expédta;ipn, and making use of Theorem 3.7, we can write

N
-

n
L
1

i

IR S EO 1) (3.36)

3|x
R -]

EZ(xij

c - Sea ¥ v

lvfﬂ¢’kﬁé§ fox any given psu in the sample that xij is an element in a

" simple random sample from the psu and according to Section 3.3 its
i lr‘_

qfexiécted value is the psu mean, X That is,

i. "

Ep(xyyl1) = X,



n
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Ez(xijli) =n, X (3.37)
Substituting the result from Equation (3.37) in Equation (3.36) gives S

. m
- )’{ o
E,(x | 1) o i X,

(3.38)
Next we need to find the expected value of Ez(x'li). In Equation

(3.38), Ni is a random variable, as well as ii-’ associated with the .first
stage of sampling. Accordingly, we will take Xi- = N

X, as the random - - . =
i7i. ) -
variable which gives in lieu of Equation (3.38). : -g
. m ' - - ‘.-'-:4: B
. gy = M Y
ket T A e
Therefore, . F
- M n e I Sl e 4 : -
EGT) = BT X.) e
i
IS NS T Y : Lwor N
From Theorem 3.3 R
. o m m i
M M 1
E.[=L X, ] ==IE (X, ) ey
1'm, "1 ? g 11 i
Since 4 -E*:
M e T
m ixi' : +
ZEl(xi-) = mf m ] L,
- i . N Ll
m M " .
M ; .
E.[-2ZX, ] =IX vl
» 1'm 1 i. i i L
M ‘ L
Therefore, E(x”) = & X,,=X This shows that x” is an unbiased Vs
i - . ":" 1
estimator of the population total.
3.10 CONDITIONAL VARIANCE

Conditional variance refers to the variance of a variable under a
specified condition or limitation.

It is related to conditional prob-
ability and to conditional expectation.
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To find the variance of x” (See Equation (3.32) or (3.33)) the following
important theorem will be used:
Theorem 3.9. The variance of x” is given by

V(x") = Vlzz(x’li) + Elvz(x‘|11

where Vl is the variance for the first stage of sampling and V2 is the
"conditional"” variance for the second stage.

We have discussed Ez(x’li) and noted there is one value of Ez(x’li)
for each psu in the population. Hence VlEz(x‘[i) is simply the variance
of the M values of Ez(x’[i). '

In Theorem 3.9 the conditional variance, Vz(x’li), by definition is

V(1) = B {1x"=E, x| )17 [4) )

b

To understand Vz(x’|i) think of x” as a linear combination of random
variables (see Equation (3.33)). Consider the variance of x” when i is
held constant. All terms (random variables) in the linear gombination
are nov constant except those originating from sampling within the ith
psu. Therefore, Vz(x’li) is associated with variation among elements in
the ith psu. Vz(x’li) is a random variable with M values in the set, one
for each psu. Therefore, Elvz(x‘li) by definition is
M
Elvz(x’[i) = iP(i)VZ(x’Ii)

That is, Elvz(x’li) is an average of M values of Vz(x’li) weipghted by
P(i), the probability that the ith psu had of being in the sample.

Three illustrations of the application of Theérem 3.9 will be given.
In each case there will be five steps in finding the variance of x~:

Step 1, find Ez(x’|i)

Step 2, find VlEz(x’li)
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Step 3, find v2(x‘|1)
Step 4, find ElVZ(x"i)
" Step 5, combine results from Steps 2.and 4.

Illustration 3.15. This is a simple illustration, selected because

we know what the answer is from previous discussion and a linear combina-
tion of random variables is not involved. Suppose x~ in Theorem 3.9 is
simply the random variable X where X has an equal probability of being

M
any one of the X,, values in the set of N = IN, . We know that the .

1] i 1
variance of X can be expressed as follows: Lo
1 Ny 2 Co '
V(x°) = rpl (& L) (3.39)
¥ iy 1578

In the case of two-stage sampling an equivalent method of selecting a
value of X is to select a psu first and then select an element within the
psu, the condition being that P(ij) = P(i)P(j]i) = %-. This condition is

W
satisfied by letting P(1) = —i and P(j!i) - l— . We now want to find
i

V(X) by using Theorem 3.9 and check the result with Equation (3.39).
Step 1. From the random selection specifications we know that

Ez(x‘li) = X Therefore,

i °

Step 2. VE,(x” [1) = v (x )
N
We know that xi. is a random variable that has a probability of ﬁl of being

equal to the ith value in the set 21""’ iM . Therefore, by definition

of the variance of a random variable,

NN,
VED =1 R, X2 (3.40)
Ly,
_ooan K
where X = i R xi- -
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Step 3. By definition

Vz(x'li) =zt

o P X

N
Step 4. Since each value of Vz(x’li) has a probability ﬁi

M N, N
P o i i }_ _- 2
E,V,(x | 1) -i T *jz N, (xij xi.) (3.41)

et N
gm0 T
B g

Step 5. From:Equations (3.40) and (3.41) we obtain

M MN
Ve =g & R D2+ o R O% (3.42)
1 i3 :

The fact that Equations (3.42) and (3.39) are the same is verified
by Equation (1.10) in Chapter I.

Illustration 3.16. Find the variance of the estimator x” given by

Equation (3.32) assuming simple random sampling at both stages of sampling.
Step 1. Theorem 3.7 is applicable. That is,

N,

™o N -
E,(x7|1) = A N xijli]
ij i

which means "sum the conditional expected values of each of the n terms

in Equation (3.33)."

RN With regard to any one of the terms in Equation (3.33), the

conditional expectation is

N N N,

ﬁ X,
M i M i M Oig M i
2[m n xijlil m n, EZ(xiin) m o n, xi- mn,
i i i i
Therefore
myo Sy
ByGrliy = ot o = (3.43)
ij i

With reference to Equation (3.43) and summing with respect to j, we have
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i xi-

i

Bi=
o

n
z
i
Hence Equation (3.43) becomes

M m
E,(x7[1) = = i X,. - (3.44)

X
i
Step 2. Find VlEz(x‘Ii). This is simple because i;— in Equation

(3.44) 1is the mean of a random sample of m from the set of psu totals

Xl.,..., XM . Therefore,

2
4]
ViE,(x7[1) = MO G — (3.45)
where :
M - 3 M
(X, X)) IX
1. - i
0‘2 = é‘_—..._.___. d X = 1-___
bL M an T

In the subscript to 02, the "b" indicates between psu variance and "1"
diéfiﬂguishes this variance from between psu Qariances in later illustra-
tions.

Step 3. Finding Vz(x‘li), is more involved because the conditional
variance of a linear combination of random variables must be derived.

- However, this is analogous to using Theorem 3.5 for finding the variance

”73;?{ of a linear combination of random variables. Theorem 3.5 applies except
that V(uli) replaces V(u) and conditional variance and conditional co-
variance replace the variancés and covariances in the formula for V(u).
As the solution proceeds, notice that‘the strategy is to shape the problem
so previous results can be used.
Look at the estimator x~°, Equation (3.33), and determine whether any

covariances exist. An element selected from one psu is independent of an
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element selected from another; but within a psu the situation is the same
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as the one we had when finding the variance of the mean of a simple random

sample. This suggests writing x” in terms of X, because the X

i. i-

independent. Accordingly, we will start with

m
x’-% zni?:i
4
Hence
My ®
Vo (x1) = V([ i X X, ]Ii}
Since the Ei.'s are independent W
2 m
x“| 1) --——. ZVZ(Nixi |1)
m i
and since Ni is constant with régafd’t&[thé“conditional variance
v o 2 m o P
- M 2
V,(x7|1) ¥ i N Vz( 4_11?

Since the sampling within each psu is simple random sampling

2
N ni 01
SONL (w 1) w,
i
where
2. gi L g % 32
i j 1 i3 “4i-

's are

(3.46)

(3.47)

Step 4., After substituting the value of V2(§i_l1) in Equation (3.46),

and then applying Theorem 3.3, we have

2.

2 m N.-n o]
. M 2 14T i
E\V,x7|1) = = I E N N1 @ ]
m i i

Since the first stage of sampling was simple random sampling and each psu

had an equal chance of being in the sample,
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2 2
e i G I G B
174 N-1T ny M {1 N-L n
Hence
2
M N,-n o
- M 2 7474 Y4
n1v2<x | 1) - i Ny N1 n (3.48)

Step 5. Combining Equation (3.48) and Equation (3.45) the answer is

02 M N, -n '02
- = 2 M-m bl M 271 174
“c;-,r - ﬁ‘;r;,‘w::;"‘m. . V (x ) M M_——l "‘m - + m i Ni Ni—l —"'ni (3 . 49)

Illustration 3.17. The sampling specifications are: (1) at the first
B N
: stage select m psu's with replacement and probability P(i) -‘—i , and (2)

N

at the second stage a simple random sample of n eléﬁehts is fo be selected
fron each of the m psu's selected at the first stage. . This will give a sam—
ple of n = mn elements. Find the variance of the sample estimate of the
population total.

-The estimator needs to be changed because the péu's are not selected
with equal probability. Sample values'need to be weighted by the recip-
rocals of their probabilities of selection if the estimator is to be
unbiased. Let

g P“(ij) be the probability of element 1ij being in the sample,

/ P“(1) be the relative frequency of the ith psu being in a sample
of m, and let

P’(jli) equal the conditional probability of element ij being in

the sample given that the ith psu is already in the sample.

Then

P°(1j) = P (1)P"(4]1) .

According to the sampling specifications P°(1) = m ﬁi . This prob-

abilitv was described as relative frequency because 'probability of being
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in a sample of m psu's” is subject to misinterpretation. The ith psu

can appear in a sample more than once and it is counted every time it
appears. That is, if the ith psu 1s selected more than once, a sanmple of
n is selected within the ith Psu every time that it is selected. By

substitution

Z

PU(11) = [m ]

“18,
Zs

(3.50)

e
Zl:’l
[

i
Equation (3.50) means that every element has an equal probability of being

in the sample. Consequently, the estimator is very simple,

N mn e
x* =8 rIx (3.51)
m ij o e

Exercise 3.18. Show that.x”, Equation (3.51), is an unbiased estimator
of the population total.
In finding V(x”) our first step was to solve for Ez(x‘[i). ' Sty

Step 1. By definition

| LN
E,(x°|1) = E. {[— :IIx, K }!1}
2 2 w13

Since i is constant with regard to E2,

NI mn
Ez(x‘li) == II E (x,[1) ~ (3.52)

mn 1j 271]
Proceeding from Equation (3.52) to the following result is left as an

exercise:
N
E,(x 1) = o ixi_ | (3.53)

Step 2. From Equation (3.53) we have

N T
ViE,(x7[1) = v, ixi‘)
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Since the X, 's are independent

i
2
lez(x [1) = =

7 V&)
m

13

Because the first stape of sampling is sampling with probability propor-

tional to ¥, and with replacement,

1
_ MON
3 = ¥ — -
v (&, ) Ty X, X ) (3.54)
Let
= 2
MACTR LY
Then' '
w2 w2
o ViE,(x7]1) = z (mo,,) = ==, (3.55)

v Exercise 3.19. s:Prove that E(ii-‘) = )-(_ . Which shows that it is

appropriate to use i__ in Equation (3.54).

Step 3. To find Vz(x’li)‘, first write the estimator as

R
X7 = L X, (3.56)
i
Then, since the Ei_'s are independent
.qZ m
»~ 1 -
V1) =55V, (x, )
m i
and
_ N,-n ci
(ISR e
i n
where
N
2 il 2
% ? N, (Ky57%40)
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Therefore

Step 4,
2 m N,-n

EV,(x7[1) == = LE

m- n

Since the probability of Vz(x’li) is

N2
E,V,(x 1) = ;2—

S e
M~ 8
R

which becomes

| §2 M Ny N-n
Elvz(x; [4) = — T TGP
mn 1 i

(3.57)

Step 5. Combining Equation ‘(3.55) and Equation (3.57) we have the

answer

02’ N N -n
o 2 (T2 1 N2
V(x”) I | - + I N (Ni_l)oi] (3.58)

e
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CHAPTER 1V. THE DISTRIBUTION OF AN ESTIMATE

4,1 PROPERTIES OF SIMPLE RANDOM SAMPLES

The distribution of an estimate is a primary basis for judging the
accuracy of an estimate from a sample survey. But an estimate is only
one number. How can one number have a distribution? Actually, "distri-
bution of an estimate' is a phrase that refers to the distribution of
all possible estimates that might occur under repetition of a prescribed
sampling plan and estimator (method of estimation). Thanks to theory
and empirical testing of the theory, it is not necessary to generate
physically the distribution of an estimate by selecting numerous samples
and making an estimate from each. However, to have a tangible distribu-
tion of an estimste as a basis for discussion, an illustration has been

prepared.

Illustration 4.1. Consider simple random samples of 4 from an

Nt _ _8!
al(N-m) T - 4141

samples. In Table 4.1, the sample values for all of the 70 possible sam—

assumed population of 8 elements. There are

= 70 possible

ples of four are shown. The 70 samples were first listed in an orderly
manner to facilitate getting all of them accurately recorded. The mean,
i, for each sample was computed and the samples were then arrayed
according to the value of x for purposes of presentation in Table 4.1.
The distribution of x is the 70 values of x shown in Table 4.1, including
the fact that each of the 70 values of x has an equal probability of being
the estimate. These 70 values have been arranged .as a frequency distribu-
tion in Table 4.2.

As discussed previously, one of the properties of simple random
sampling is that the sample average is an unbiased estimate of the popu-

lation average; that is, E(x) = X. This means that the distribution of




Table 4.1--Samples of

four

elements from a population
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of eight 1/

: Values of

e ow

* Values of 3

Sample : : - : 2 Sample: - : 2
number : *4 . X : s ¢ number: Xy X : s
1lc 2,1,6,4 3.25 4.917 : 36s 1,6,8,9 6.00 12,667
2 2,1,4,7 3.50 7.000 : 37s 1,4,8,11 6.00 19.333
3 2,1,4,8 3.75 9.583 : 38s 2,6,8,9 6.25 9.583
4 2,1,6,7 4,00 8.667 : 39s 2,4,8,11 6.25 16.250
5 2,1,4,9 4.00 12.667 : 40s 1,6,7,11 6.25 16.917
6 2,1,6,8 4.25 10.917 : 41s 1,4,11,9 6.25 20.917
7 2,1,6,9 4,50 13.667 : 42 1,7,8,9 6.25 12,917
8 2,1,4,11 4,50 20.333 : 43cs  6,4,7,8 6.25 2.917
9cs 2,1,7,8 4.50 12.333 : 44s 2,6,7,11 6.50 13.667
10 1,6,4,7 4.50 7.000 : 45s 2,4,11,9 6.50 17.667
1ls 2,1.7,9 4.75 14,917 = 46 2,7,8,9 ¢ 6.50 9.667
12 2,6,4,7 4.75 4,917 : 47s 1,6,8,11 6.50 17.667
13 1,6,4,8 4,75 8.917 : 48s 6,4,7,9 6.50 4,333
14 2,1,6,11 5.00 20.667 : 49s 2,6,8,11 6.75 14.250
15s 2,1,8,9 5.00 16.667 : 50s 1,6,11,9 6.75 18.917
16 2,6,4,8 5.00 6.667 : 51 1,7,8,11 6.75 17.583
17 1,6,4,9 5.00 11.337 = 52s 6,4,8,9 6.75 4.917
18s 1,4,7,8 5.00 10.000 : 53s 2,6,11,9 7.00 15.333
19s 2,1,7,11 5.25 21.583 : 54 2,7,8,11 7.00 14.000
20 2,6,4,9 5.25 8.917 : 55 1,7,11,9 7.00 18.667
21s 2,4,7,8 5.25 7.583 : 56s 6,4,7,11 7.00 8.667
22s 1,4,7,9 5.25 12,250 : 57 4$,7,8,9 7.00 4,667
23s 2,1,8,11 5.50 23.000 = 58 2,7,11,9 7.25 14,917
248 2,4,7,9 5.50 9.667 : 59 1i,8,11,9 7.25 18.917
25 1,6,4,11 5.50 17.667 : 60s 6,4,8,11 7.25 8.917
26s 1,6,7,8 5.50 9.667 : 61 2,8,11,9 7.50 15.000
27s 1,4,8,9 5.50 13.667 : 62cs  6,4,11,9 7.50 9.667
28cs 2,1,11,9 5.75 24,917 ¢ 63 6,7,8,9 7.50 1.667
29 2,6,4,11 5.75 14.917 : 64 4,7,8,11 7.50 8.333
30s 2,6,7,8 5.75 6.917 : 65 4,7,11,9 7.75 8.917
31s 2,4,8,9 5.75 10.917 : 66 6,7,8,11 8.00 4,667
32s 1,6,7,9 5.75 11.583 : 67 4,8,11,9 8.00 8.667
33s 1,4,7,11 5.75 18.250 : 68 6,7,11,9 8.25 4.917
34s 2,6,7,9 6.00 8.667 : 69 6,8,11,9 8.50 4,333
35s 2,4,7,11 6.00 15.333 ¢ 70c 7,8,11,9 8.75 2.917
1/ Values of X for the population of eight elements are Xl = 2, X2 =1,
X3 = 6, Xa_-24, XS -7, X6 = 3, X7 = 11, x8 =9; X = 6.00; "and
2 Z(xi-x)
$° m ———— = 12.

N-1
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Table 4.2--Sampling distribution of x

Relative frequency of x

:Stratified random
: sampling
:Illustration 4.2

E

Simple random
: sampling ‘
tIllustration 4.1

.
.

.Cluster sampling
Illustration 4.2

e 98 as se s

3.25
3.50
. 3.75
4.00
« 4.25
4.50
4.75
¥ 5;00
5.25 "F SrfTRanc
5.50
5.75
6.00 -
6.25
6.50
6.75
7.00
7.25
- 7.50
7.75
¢ 8.00
8.25
8.50
| 8.75

T A
T N L T

o N WS LW e

Total

~
o
[=))

36

Expected value
of x 6.00 6.00 6.00

Variance of x 1.50 ‘ 3.29 0.49
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x 18 centered on X. If the theory is correct, thg average of x for the

70 samples, which are equally likely to occur, should be equal to the

population hverage, 6.00. The average of the 70 samples does equal 6.00.
From the theory of expected values, we also know that the variance

of x is given by

2

N-n S .

Hino

ggﬁ@_ggg where

a3 N )

Z(Xi-x)

S2 -1
| N-1

2

! |
With reference to Illustration 4.1 and Table 4.1, S2

_Qgﬁ.%l = 1.5 . The formula (@.1) can be verified by computing the

= 12.00 and 52 =
X

variance among the 70 values of x as follows:

(3.25-6.00)% + (3.50-6.00)% +...+ (8.75-6.00)% _
70

1.5

Since S2 is a population parameter, it is usually unknown. Fortu-

nately, as discussed in Chapter 3, E(sz) - 52 where

n
2(x1-§)2
I 82 - i
o n-1

In Table 4.1, the value of 32 is shown for each of the 70 samples. The

average of the 70 values of sz is equal to Sz. The fact that E(sz) - 82
is another important property of simple random samples. In practice 82 is

used as an estimate of 52. That 1is,
2

»in

N-n
8 N

bl‘ﬂ

is an unbiased estimate of the variance of x.
To recapitulate, we have just verified three important properties of

simple random samples:
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S
/n

The standard error of x, namely S; , 1s a measure of how much x varies
under repeated sampling from X. Incidentally, notice that Equation (4.1)
shows how the variance of x is related to the size of the sample. Now
we need to consider the form or shape of the distribution of x.

Definition 4.1. The distribution of an estimate is often called the

sampling distribution. It refers to the distribution of all possible“
values of aniestimate that could occur under a prescribed sampling plan;f
4.2 SHAPE OF THE SAMPLING DISTRIBUTION
For random sampling there is a 1afge volume of literature on the o
distribution of an estimate which we will not attempt to review. In
practice, the distribution is generally accepted as being normal (See
Figure 4.1) unless the sample size is '"small." The theory and empirical
tests show that the distribution of an estimate approaches the normal
distribution rapidly as the size of the sample increases. The closeness
of the distribution of an estimate to the normal distribution depends on:
(1) the distribution of X (i.e., the shape of the frequency distribution
of the values of X in the population being samﬂled), (2) the form of the
estimator, (3) the sample design, and (4) the sample size. It is not
possible to give a few simple, exact guidelines for deciding when the
degree of approximation is good enough. In practice, it is generally a

matter of working as though the distribution of an estimate is normal but

being mindful of the possibility that the distribution might differ
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I | I ' |
E(x )-20x, E(x )-ox, E(x7) “3E(x )fcx,‘miE(x )+20x’

Figure 4.1--Distribution of anwestimate (normal distribution)

considerably from normal when the sample is very small and the population
distribution is highly skewed. 3/

It is very fortunate that the sampling distribution is approximately
normal as it gives a basis for probability statements about the precision
of an estimate. As notation,x” will be the general expression for any
estimate, and 0 - is the standard error of x~.

Figure 4.1 is a graphical representation of the sampling distribution
of an estimate. It is the normal distribution. In the mathematical
equation for the normal distribution of a variable'there are two parameters:

| the average value of the variable, and the standard error of the variable.

g/ For a good discussion of the distribution of a sample estimate, see
Vol. I, Chapter 1, Hansen, Hurwitz, and Madow. Sample Survey Methods and
Theory, John Wiley and Sons, 1953.
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Suppose x° is an estimate from a probability sample. The characteristics
of the sampling distribution of x° are specified by three things: (1) the
expected value of x°, E(x;), which is the mean of the distribution; (2) the
standard error of x~, O - and (3) the assumption that the distribution is
normal. If x” is normally distributed, two-thirds of the values that x~
could equal are between [E(x”) - ox,] and [E(x") + ax,], 95 percent of the
possible values of x” are between [E(x”) - Zox,] and [E(x7) + Zax,], and

99,7 percent of the estimates are within 3ax, from E(x7).

Exercise 4.1. With reference to Illustration 4.1, find E(x) - oz and‘
E(x) + o - Refer to Table 4.2 and find the proportion of the 70 valuesh'%w_
of x that are between E(x) - o and E(x) + og - How does this compare witﬁ
the expected proportion assuming the sampling distribution of x is normal?
The normal approximation is not expected to be close, owing to the small |
size of the population and of the sample. Also compute E(x) - 20; and
E(x) + 20; and find the proportion of the 70 values of x that are between
these two limits.
4.3 SAMPLE DESIGN

There are many methods of designing and selecting samples and of making
estimates from samples. Each sampling method and estimator has a sampling
distribution. Since the sampling distribution is assumed to be normal,
alternative methods are compared in terms of E(x”) and g - (or ci,).

For simple random sampling, we have seen, for a sample of n, that

every possible combination of n elements has an equal chance of being the

sample selected. Some of these possible combinations (samples) are much
better than others. It is possible to introduce restrictions in sampling

so some of the combinations cannot occur or so some combinations have a
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higher probability of occurrence than others. This can be done without
introducing bias in the extimate x” and without losing a basis for esti-
mating Oy e - Discussion of particular sample designs is not a primary
purpose of this chapter. However, a few simple illustrations will be
used to introduce the subject of design and to help develop concepts of
sampling variation.

Illustration 4.2. Suppose the population of 8 elements used in

Table 4.1 is arranged so it consists of four sampling units as follows:

Sampling Unit Elements Values of X Sample Unit Total
1l 1,2’ xl -2, x2 = 1 3
[ 2 3,4 x3 = 6,.x4 = 4 10
3 5,6 XS =7, x6 = 8 15
4 7,8 x7 = 11, x8 =9 20

For sampling purposes the population now consists of four sampling
units rather than eight elements. I1f we select a simple random sample of
two sampling units from the population of four sampling units, it is clear
that the sampling theory for simple random sampling applies. This illus-
tration points out the importance of making a clear distinction between a
sampling unit and an element that a measurement pertains to. A sampling
unit corresponds to a random selection and it is the variation among sam-
pling units (random selections) that determines the sampling error of an
estimate. Wﬁen the sampling units are composed of ﬁore than one element,
the sampling is commonly referred to as cluster sampling because the ele-

ments in a sampling unit are usually close together geographically.
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For a simple random sample of 2 sampling units, the variance of Ec’

where ;c is the sample average per sampling unit, is

.52
‘s.% - Non £ = 13.17
x, N n

where

- 1%+ 10112)% + a5-12)% + (20-12)% _ 158

2
N=4,n=2, and Sc 3 3

Instead of the average per sampling unit one will probably be interested

x -
in the average per element, which is x = 35 s 8ince there are two elements -
in each sampling unit. The variance of x is one-fourth of the variance
of ic. Hence, the variance of x is égill = 3.29.

There‘ire only‘six possible random samples"as follows:

| Sample average per

Sampleﬁ”Sampling Units . sampling unit, ic s:
1 1,2 - 6.5 24,5
2 1,3 9.0 72.0
3 1,4 11.5 144.5
4 2,3 12.5 12.5
5 T 2,4 15.0 50.Q
6 3,4 17.5 : 12.5
n
Z(x,-% )2
where s: - P~ and x; is a sampling unit total. Be sure to notice

that si (which 18 the sample estimate of Sz) is the variance among sampling
units in the sample, not--the variance among individual elements in the

sample. From the list of six samples, it is easy to verify that ic is an

unbiased estimate of the population average per sampling unit and that s:

is an unbiased estimate of l%ﬁ » the variance among the four sampling
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units in the population. Also, the variance among the six values of x is
13.17 which agrees with the formula.

The si¥ possible cluster samples are among the 70 samples listed in
Table 4.1. Their sgmple numbers in Table 4.1 are 1, 9, 28, 43, 62, and
70. A "c¢" follows these sample numbers. The sampling distribution for
the six samples is shown in Table 4.2 for comparison with simple random
sampling. It is clear‘fr$m inspection that random selection from these
six is less desirable than random selection from the 70. For example,
one of the two extreme averages, 3 25 or 8. 75 ‘has a probability of l-of

3

occurring for the cluster sampling and a probability of only %g-when
selecting a simple random sample of four elements. In this illustration,
the sampling restriction (clustering of elements) increased the‘sampling”
variance from 1.5 to 3.29. |

It is of importance to note that the average variance among elements
within the four clusters is only 1.25. (Students should compute the within
cluster variances and verify 1.25). This is much less than 12.00, the
variance among the 8 elements of the population. In reality, the varilance
among elements within clusters is usually less than the variance among all
elements in the population, because clusters (sampling units) are usually
compésed of elements that are close together and elements that are close

together usually show a tendency to be alike.

Exercise 4,2. In Illustration 4.2, if the average variance among

elements within clusters had been greater than 12.00, the sampling variance
for cluster sampling would have been less than the sampling variance for a

simple random sample of elements. Repeat what was done in Illustration 4.2
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using as sampling units elements 1 and 6, 2 and 5, 3 and 8, and 4 and 7.
Study the results.

Illustration 4.3. Perhaps the most common method of sampling is to

assign sampling units of a population to groups called strata. A simple
random sample is then selected from each stratum. Suppose the population
used in Illustration 4.1 is divided into two strata as follows:

Stratum 1 Xl = 2,‘X2 =1, X, =6,X =4

4

Stratum 2 XS =7, X6 = 8, X7 =11, X8 = 9
RN

The sampling plan is to select a simple random sample of two elemeﬁts

3

from each stratum. There are 36 possible samples of 4, two fro& eaEH’Jf?-
étréﬁum. ‘Tﬁese 3é‘samples‘are identified in Table ﬁ.l‘ﬁy an'snaftef tﬁen.

sample number so you may compare the 36 poésible strgéified random samﬁi;i? f'
with the 70 simple random samples and with the six cluster sampieslh Als&fjli ”

see Table 4.2.
Consider the variance of x. We can write
X ¥%,
2

X =
where §1 is the sample average for stratum 1 and §2 is the average for

stratum 2. According to Theorem 3.5
2= @2 +sk +asc o)
1 2 172
We know the covariance, S; o is zero because the sampling from one
172
stratum is independent of the sampling from the other stratum. And,

since the sample within each stratum is a simple random sample,
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The subscript "'1" refers to stratum 1. Si is of the same form as S% .
2 1
Therefore, 2 2
2 1 ™ S M 5
STalw— o Y w5,
_ 1 1 T2 M
Since
Nl_nl = Nz_nz -1 and n, = n, = 2
Nl N2 2 1l 2
52+52
21272y L1 h9242.92) g 4

The varianée, 0.49, is comparable to 1.5 in Illustration 4.1 and to 3.29 in
Illustration 4.2.
‘ I B o

In Illustration 4.2, the sampling units were groups of two elements qu‘
the variance among these groﬁps (sampling units) appeared in the formula
for the‘va;iance of §.' In Illustration 4.3, each element was a sampling
unit but the selecgion process (randomization) ;as restricted to taking
one stratum (subset) at a time,so the sampling variance was determined by
variability wi;hin strata. As you study sampling plans, form mental pictures
of the variation which the sampling error depends on. With experience and
accumulated knowledge of what the patterns of variation in various popula-
tions are like, one can become expert in judging the efficiency of alterna-
tive sampling plans in relation to specific objectives of a survey.

I1f the population and the samples in the above illustrations had been
larger, the distributions in Table 4.2 would have been approxinately nor-
mal. Thus, since the form of the distribution of an estimate from a prob-
ability sample survey is accepted as being normal, only two attributes of

an estimate need to be evaluated, namely its expected value and its

variance.
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In the above illustrations ideal conditions were implicitly assumed.
Such conditions do not exist in the real world so the theory must be
extended to fit, more exaétly, actual conditions. There are numerous
sources of error or variation to be eva;uated. The nature of the rela-
tionship between theory and practice is a major governing factor deter-
‘y;l : mining the rate of progress toward improvement of the accuracy of survey
results.

We will now extend error concepts toward more practical settings.

4.4 RESPONSE ERROR

So far, we have discussed sampling under implicit assumptions that
measurements are obtained from all n elements in a sample and that the
measurement for each element is without error. Neither assumption fits,
exactly, the real world. In addition, there are "coverage" errors of
various kinds. For example, for a farm survey a farm is defined but
( application of the definition involves some degree of ambiguity about
whether particular enterprises satisfy the definition. Also, two persons
might have an interest in the same farm tract giving rise to the posaibiiity

that the tract might be counted twice (included as a part of two farms) or

omitted entirely.

L Partly to emphasize that error in an estimaté is more than a matter
of sampling, statisticians often classify the numerous sources of error
into one of two general classes: (1) Sampling errors which are errors
associated with the fact that one has measurements for a sample of elements
rather than measurements for all elements in the population, and (2) non-
sampling errors--errors that occur whether sampling is involved or not.

Mathematical error models can be very complex when they include a term for
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each of many sources of error and attempt to represent exactly the real
world. However, complicated error models are not always necessary,
depending upon the purposes;

For‘purposes of discussion, two oversimplified response-error models
will be used. This will introduce the subject of response error and give
some clues regarding the nature of the impact of response error on the
distribution of an estimate. For simplicity, we will assume‘that a
measurement is obtained for each element in a random sample and that no
ambiguity exists regarding the identity or definition of an element. Thus,

we will be considering sampling error and response error simultaneously.

Illustration 4.4. Let :1""’Tﬁ be the "true values" of some variable .
for the N elements of a population. The mention of true values raises = ;.
numerous questions about what is a true value. For example, what is your .,
true weight? How would you define the true weight of an individual? We . .
will refrain from discussing the problem of defining true values and simply -
assume that true values do exist according to some practical definition.

When an attempt is made to ascertain Ti' some value other than T, might

i

be obtained. Call the actual value obtained Xi. The difference, e, =

is the response error for the 1th element. If the characteristic,
h

Xi - Ti'

for example, is a person's weight, the observed weight, xi, for the 1t
individual depends upon when and how the measurement is taken. However,

for simplicity, assume that X, is always the value obtained regardless of

i

the conditions under which the measurement is taken. 1In other words,
assume that the response error, e is constant for the ith element. In
this hypothetical case, we are actually sampling a population set of values

X

1""’XN instead of a set of true values Tl""’T

N.
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Under the conditions as stated, the sampling theory applies exactly
to the set of population values Xl,...,XN. If a simple random sample of

elements is selected and ﬁeasurements for all elements in the sample are

=

LT
‘ i
obtained, then E(x) = X. That is, if the purpose is to estimate T = i_

N 3
the estimate is biased unless T happens to-be equal to X. The bias is
X - T which is appropriately called "response bias."
Rewrite e, = Xi - TL as follogg:

Xi - 1“1« +‘e

i AT Wb b VLA LN S Co S RERT
Then, the mean of a simple random ,sample .may be expressed as

n n ‘ F A S O AL

_ in Z(ti+ei) ’ .
X = = Y i
n n — i
or, as x=t+e.

From the theory of expected values, we have
E(x) = E(t) + E(e)
Since E(x) = X and E(t) = T it follows that
X=T+ E(e) N
- - - - Eei
Thus, x is a biased estimate of T unless E(e)= 0, where E(e) = - -

That is, E(e) 1s the average of the response errors, e,, for the whole

1'
population.,

For simple random sampling the variance of x is

N o,
2 L(X,-X)
S 1

sg - N0 X wher 32 - i

x° N n e 9x N-1

How does the response error affect the variance of X and of x? We have

already written the observed value for the ith element as being equal to

(4.2)
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its true value plus a response error, that is, Xi - '1'1 + e, . Assuming

random sampling, '1‘i and e, are random variables. We can use Theorem 3.5

from Chapter II1 and write

2 2 2
Sy = Sp+ S, + 2sT’e (4.3)
where Si is the variance of X, S% is the variance of T, SZ is the response
variance (that is, the variance of e), and S is the covariance of T and

T,e
e. The terms on the right-hand side of Equation (4.3) cannot be evaluated

unless data on Xi and T, are available; however, the equation does show how

i
the response error influences the variance of X and hence of x.
As a numerical example, assume.a population of five elements and the

following values for T and X:

e K !
23 26 3
13 12 -1
17 23 6
25 25 0
_1 9 2
Average 17 19 2

Students may wish to verify the following results, especially the variance

of e and the covariance of T and e:
s2 = 62.5 s2 =540 S$°=7.5 S. =0.5
x T » - »

As a verification of Equation (4.3) we have

62.5 = 54.0 + 7.5 + (2)(0.5)
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n

(x,-%)
From data in a simple random sample one would compute s% = 1 ]
82
and use !ﬁﬁ- ;5 as an estimate of the variance of x. Is it clear that
2 2 2

s, is an unbiased estimate of Sx rather than of ST and that the impact of
variation in e, is included in si ?

To summarize, résponse error caysed a bias in x as an estimate of T
that was ‘equal to X - T. In addition, it was a source of variation included
‘in the standard error of x. To evaluate bias and variance attributable to
1 and T1 must be available.

Illdsffation 4.5. In this:case, we assume that the‘response error

response error, information on X

for a given element is not constant. That is, if an element were measured
on several occasions, the observed values for the ith element could vary
even though the'true value, Ti’ remained‘unchanged. Let the error model be

xij - Ti + eij

where xij is the observed value of X for the ith element when the

observation is taken on a particular occasion, j,

Ti is the true value of X for the 1th element,

and e/, is the response error for the ith element on a particular

i3

occasion, j.

Asgume, for any given element, that the response error, , 18 a random

eij

variable. We can let e/, = e, + e,,, where e, is the average value of e

13 17 %1y 1
for a fixed 1, that 1is, ;i - E(eijli). This divides the response error
h

1)

for the 1t element into two components: a constant component, ;1’ and a

variable component, By definition, the expected value of eij is zero

eij'
for any given element. That is, E(eijli) = 0.
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Substituting Ei + e,, for e;,, the model becomes

13 1j

xi.j =T, +e + eij (4.4)

The model, Equation (4.4), is now in a good form for comparison with

i

Equation (4.2) is constant for a given element. Thus, the two models

the model in Illustration 4.4, In Equation (4.4), ;i’ like e, in

are alike except for the added term, e in Equation (4.4) which allows

i3’
for the possibility that the response error for the ith element might not

be constant.
.o T S TR \ R S

Assume a simple random sample of n elements and one observation for
‘ Co N '

each element. According to the model, Equation (4.4), we may now write

' 1 } . i

the sample mean as follows:

P TLET v

Lt p Z
T T . . B
X == 4+ =— +
n ‘n n

Summation with respect to j is not needed as there is only one observation
for each element in the sample. Under the conditions specified the expected
value of x may be expressed as follows:

E(x) =T + e

N N_
ZTi Zei
where Tel  ande= i
N N

The variance of x is complicated unless some further assumptions are

made. Assume that all covariance terms are zero. Also, assume that the

‘conditional variance of e is constant for all values of 1; that is, let

1]
V(eijli) - Sz. Then, the variance of x is

N
N

2
5r, ¥
n N

=) lmm
Dlmm

N-n
S N

®ino
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N N
£(T,~T)2 Z(e,-o)°
1 1
h s2al s2 -l
where T N-1_ ' e N-1  °

and S: is the conditionai variance of e that is, V(e ]i). For this

ij°? .
model the variance of x does not diminish to zero as n»N. However, assuming
_ 52
! N is large, the variance of x, which becomes oo is probably negligible.

Definition 4.2. Mean-Square Error. In terms of the theory of expected

values the mean-square error of an estimate, x°, is E(x‘—T)2 where T is the

target value,-that is, the value being estimated. From the theory it is

easy to show that S R
Y Ex-T)? = [EGD-TI% ¥+ E[x~E(x"))%

L . : v : o I
Thus, the mean~square error, mse, can be expressed as follows:

i

mse = B2 + c:, (4.5)

where B=E(X")-T (4.6)
2 - eyl

and O .= E[{x™-E(x7)]" 4.7)

Definition 4.3. Bias. ' In Equation (4.5), B is the bias in x” as

; an estimate of T.

‘:“k Definition 4.4. Precision. The precision of an estimate is the
| - standard error of the estimate, namely, ax, in Equation (4.7).
Precision is a measure of repeatability. Conceptually, it is a
measure of the dispersion of estimates that would be generated by repetition
of the same sampling and estimation procedures many times under the same
conditions. With reference to the sampling distribution, it is a measure

, of the dispersion of the estimates from the center of the distribution and
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does not include any indication of where the center of the distribution
is in relation to a target.

In Illustrations 4.1, 4.2, and 4.3, the target value was implicitly
assumed to be X; that is, T was equﬁl to X. Therefore, B was zero and
the mean-square error of x” was the same as the variance of x“. 1In
Illustrations 4.4 ané 4.5 the picture was broadened somewhat by intro-
ducing response error and examining, theoretically, the impact of response
error on E(x”) and O e In practice many factors have potential for
influencing the sampling distribution of x”. That is, the data in a
sample are subject to error that might be attributed to several sources.

From sample data an estimate, x°, 1is comppted and an estimate of the
variance of x” is also computed. How does one interpret the results? 1In
Illustrations 4.4 and 4.5 we foundlthat response error could be divided
into bias and variance. The error from any source can, at least concep-
tually, be divided into bias and variance. An estimate from a sample is
subject to the combined influence of blas and variance corresponding to
each of the several source; of error. When an estimate of the variance
of x” is computed from sample data, the estimate is a combination of
variances that might be identified with various sources. Likewise the
difference between E(x”) and T 18 a combination of biases that might be
identified with various sources.

Figure 4.2 illustrates the sampling distribution of x“ for four
different cases: A, no bias and low standard error; B, no bias and large
standard error; C, large bias and low standard error; and D, large bilas
and large standard error. The accuracy of an estimator is sometimes defined

as the square root of the mean-square error of the estimator. According
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C: Large bias--low standard error D: Large bilas——large standard error

Figure 4,2--Examples of four sampling distributions

Figure 4.3~~Sampling distribution—-—
Each small dot corresponds to an estimate




134

to that definition, we could describe estimgtors having the four sampling
distributions in Figure 4.2 as follows: In case A the estimator is precise
and accurate; in-B the estimator lacks precision and is therefore inaccurate;
in C the estimator is precise but ihagcurate because of bias, and in D “the
estimator i1s inaccurate because of bias and low precision.

Unfortunately, it is generally not possible to determine, exactly,
the magnitude of bias in an estimate, or of a particular component of bias.
However, evidence of the magnitude of bias is often available from general
experience, from knowledge of how well the survey processes were performed,
and from special investigations. The author accepts a point of view that
the mean-square error is an appropriate concept of accuracy to follow. 1In
that context, the concern becomes a matter of the magnitude of the mse and
the size of B relative to cx,.‘ﬁIhatmyiewpoint is important because it is |
not possible to be[cettain that B is zero. Our goal should be to prepare
survey specifications and to conduct survey operations so B is small in
relation to O - Or, one might say we want the mse to be minimum for a
given cost of doing the survey. Ways of getting evidence on the magnitude
of bias is a major subject and is outside the scope of this publication.

As indicated in the previous paragraph, it is important to know some-
thing about the magnitude of the bias, B, relative to the standard error,
O -+ The standard error is controlled primarily by the design of a sample
and its size. For many survey populations, as the size of the sample
increases, the standard error becomes small relative to the bias. 1In fact,
the bias might be larger than the standard error even for samples of
moderate size, for example a few hundred cases, depending upon the circum-

stances. The point is that if the mean-square error is to be small, both
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B and 0x’ must be small. The approaches for reducing B are very different
from the approaches for reducing Ox" The greater concern about non-
sampling-error is bias récher than impact on variance. In the design and
selection of samples and in the processes of doing the survey an effort is
made to prevent biases that are "sampling" in origin. However, in survey
work one must be constantly aware of potential biases and on the alert to
minimize biases as well as random error (that is, ax,).

The above discussion puts a census in the same light as a sample.
Results from both havé a mean-square error. Both are surveys with refer-
ence to use of results. Uncertain inferences are involved in the use of
results fr;m“h census as well as from™a sample. The only difference is
that in a census one attempts to get a measurement for all N elements,
but mﬁking n = ﬁ“doeé hot reduce the mse to zero.‘ Indeed, as the sample“
size 1ncrehsés}cheré is no pbsitive assurance that fhe‘hse will always
decrease; because, as the variance component of the mse decreases, the
bias component might increase. This can occur especially when the popu-
lation is large and items on the questionnaire are such that simple,
accurate answers are difficult to obtain. For a large sample or a census,
compared to a small sample, it might be more difficult to control factors
that cause bias. Thus, it is possible for a census to be less accurate
(have a larger mse) than a sample wherein the sources of error are more
adequately controlled. Much depends upon the kind of information being
collected.

4.5 BIAS AND STANDARD ERROR
The words "bias," "biased," and "unbiased" have a wide variety of

meaning among various individuals. As a result, much confusion exists,




136

especially since the terms are often used loosely. Technically, it seems
logical to define the bias in an estimate as being equal to B in Equation
(4.6), which is the differehce between the expected value of an estimate
and the target value. But, except for hypothetical cases, numerical values
do not exist for either E(x”) or the target T. Hence, defining an unbiased
estimate as one where B = E(x”) - T = 0 is of 1little, if any, practical
value unless one is willing to accept the‘target as being equal to E(x”).
From a sampling point of view there are cpnd;tions that give a rational
basis for accepting E(x“) as the targe;rvqﬂowgver, regardless of how the
target is defined, a good practicglxin;erpretation of E(x”) is needed.

It has become common practice amongj§qugy statisticians to call an
estimate unbilased when it is baseﬁ‘ppwmgthoﬂs of sampling and estimgtion“v:
that are "unbiased." 13‘01':e:;:mnpl‘leﬂ,4 in:I}lusFration 4.4, Elwould be referred
to as an unbilased estimate--unbiased because the method of sampling and
estimation was unbiased. In other words, since x was an unbiased estimate
of i, x could be interpreted as an unbiased estimate of the result that
would have been obtained if all elements in the population had been
measured.

In Illustration 4.5 the expected value of x is more difficult to
describe. Nevertheless, with reference to the method of sampling and
estimation, x was "unbiased" and could be called an unbiased estimate
even though E(X) is not equal to T.

The point is that a simple statement which says, "the estimate is
unbiased" is incomplete and can be very misleading, especially if one is
not familiar with the context and concepts of bias. Calling an estimate

unbiased is equivalent to saying the estimate is an unbiased estimate of
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its expected value. Regardless of how "bias" 1s defined or used, E(x”)
is the mean of the sampliqg distribution of x; and this concept of E(x”)
is very 1ﬁportant because E(x”) appears in the standard error, Oy s of x~
as well as in B. See Equations (4.6) and (4.7).

As a simple concept or picture of the error of an estimate from a
survey, the writer likes the analogy between an estimate and a shot at
a target with a gun or an arrow. Think of a survey being replicated
many times using the same sampling plan, bué a different sample for each
replication. Each replication would provide an estimate that cotrespoﬁds !
to a shot at a target. |

. e
In Figure 4.3, each dot corresponds to an estimate from one of the

replicated samples. The center of the cluster of dots is labeled E(x))

. " ]
fad ot i ikl

because it corresponds to the expected value of an estimate. Around the

PR

. point E(x”) a circle is drawn which contains two-thirds of the points.

The radius of this circle corresponds to O s the standard error of the
estimate. The outer circle has a radius of two standard errors and con-
tains 95 percent of the points. The target is labeled T. The distance
between T and E(x”) ia bias, which in the figure is greater than the
standard error.

In practice, we usually have only one estimate, x“, and an estimate,
8 s of the standard error of x°. With reference to Figure 4.3,‘this
means one point and an estimate of the radius of the circle around E(x”)
that would contain two-thirds of the esfimates 1n.repeated samplings. We
do not know the value of E(x”); that 18, we do not know where the center
of the circles i1s. However, when we make a statement about the standard

error of x°, we are expressing a degree of confidence about how close a
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particular estimate prepared from a survey is to E(x”); that is, how
close one of the points in Figure 4.3 probably is to the unknown point
E(x“). A judgment as to how far E(x”) is from T is a matter of how T
is defined and assessment of the magnitude of biases associated with
various sources of error.

Unfortunatelf, it is not easy to make a short, rigorous, and complete
interpretative statement about the standard error of x”. If the estimated
standard error of x” is three percent, one could simply state that fact
and not make an interpretation. It does not help much to say, for example,
that the odds afé aﬁout two out of three that the estimate is within three
percent of its expected value, because a person familiar with the concepts
* already uﬂ@er?tands that and'it‘probaﬁly does not help the person who is
unfamiliar wifh the concepts. Suppo?e one states, ''the standard error of
x” means the odag are two oug‘of three‘that the estimate is within three
percent of the value that would have been obtained from a census taken

under identically the same conditions.’ That is a good type of statement
to make but, when one engages in considefations of the finer points,

interpretation of "a census taken under identically the same conditions'

-

is needed--especially since it is not possible to take a census under

identically the same conditions. aiy
In summary, think of a survey as a fully defined system or process

including all details that could affect an estimate, including: the method

of sampling; the method of estimation; the wording of questions; the order

of the questions on the questionnaire; interviewing procedures; selection,

training, and supervision of interviewers; and editing and processing of
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data. Conceptually, the sampling is then replicated many times, holding
all specifications and conditions constant. This would generate a sam-
pling dis;ribution as illustrated in Figures 4.2 or 4.3. We need to
recognize that a change in any of the survey specifications or conditions,
regardless of how trivial the change might seem, has a potential for
changing the sampling distribution, especially the expected value of x~.
Changes in survey plans, even though the definition of the parameters
being estimated remains unchanged, often result in discrepancies that
are larger than the random error that can be attributed to sampling.

The points discussed in the latter part of this chapter were included

to emphasize that much more than. a well designed sample is required to

" assure accurate results. Good survey planning and management calls for
‘ evaluation of errors from all sources and for trying to balance the effort

. to control error from various sources so the mean-square error will be

within acceptable limits as economically as possible,
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